A N N A M A L A I (Accredited with 'A+' Grade by NAAC) DIRECTORATE OF DISTANCE EDUCATION Annamalainagar – 608 002

Semester Pattern: 2023-24 Instructions to submit Fifth Semester Assignments

- Following the introduction of semester pattern, it becomes mandatory for candidates to submit assignment for each course.
- 2. Assignment topics for each course will be displayed in the A.U, DDE website (www.audde.in).
- Each assignment contains 5 questions and the candidate should answer all the 5 questions. Candidates should submit assignments for each course separately. (5 Questions x 5 Marks =25 marks).
- Answer for each assignment question should not exceed 4 pages. Use only A4 sheets and write on one side only. Write your Enrollment number on the top right corner of all the pages.
- Add a template / content page and provide details regarding your Name, Enrollment number, Programme name, Code and Assignment topic. Assignments without template / content page will not be accepted.
- 6. Assignments should be handwritten only. Typed or printed or photocopied assignments will not be accepted.
- Send all Fifth semester assignments in one envelope. Send your assignments by Registered Post to The Director, Directorate of Distance Education, Annamalai University, Annamalai Nagar – 608002.
- 8. Write in bold letters, "ASSIGNMENTS FIFTH SEMESTER" along with PROGRAMME NAME on the top of the envelope.
- Assignments received after the last date with late fee will not be evaluated.
 Date to Remember

Last date to submit fifth semester assignments: 15.11.2023Last date with late fee of Rs.300 (three hundred only): 30.11.2023

Dr. T.SRINIVASAN Director

<u>B.Sc. MATHEMATICS – (S010)</u> <u>V – SEMESTER</u>

ASSIGNMENT QUESTIONS

Course Code :010E3510 - ABSTRACT ALGEBRA - I

(5x5=25 Marks)

- 1. Define a group. Give an example. Prove that in a group G
 - (i) The identity element is unique.
 - (ii) The inverse of an element is unique.
 - (iii) $(a^{-1})^{-1} = a \forall a \in G$
 - (iv) $(ab)^{-1} = b^{-1}a^{-1} \forall a, b \in G$
- Define a subgroup. Give an example. Let H and K be two subgroups of a group G. Prove that
 - (i) $H \cap K$ is a subgroup of G.
 - (ii) $H \cup K$ is a subgroup of G if and only if either HCK or KCH.
- 3. Define HK, where H and K are subgroups of a group G. Prove that HK is a subgroup of G if and only if HK=KH.
- 4. Define a normal subgroup and Quotient group. Let φ be a homomorphism of a group G into a group \overline{G} . Prove that
 - (i) $\varphi(e) = \bar{e}$ where e and \bar{e} are the identity elements of G and \bar{G} respectively.
 - (ii) $\varphi(x^{-1}) = [\varphi(x)]^{-1}$
 - (iii) Ker φ is a normal subgroup of G.
 - (iv) (G) is a subgroup of \overline{G} .
- 5. Define A(S) where S is a non-empty set. State and prove Cayley's theorem.

Course Code :010E3520 - REAL ANALYSIS

(5x5=25 Marks)

- 1. Prove that the set $[0,1] = \{x/0 \le x \le 1\}$ is uncountable.
- 2. (a) If 0 < x < 1, then prove that the geometric sequence $\{x^n\}_{n=1}^{\infty}$ converges to zero.
 - (b) If $1 \le x \le \infty$, then prove that the sequence $\{x^n\}_{n=1}^{\infty}$ diverges to ∞ .
- 3. State and Prove Leibnitz Test.
- 4. State and Prove Ratio Test.
- 5. State and Prove the Fundamental theorem of Calculus.

Course Code :010E3530 – MECHANICS

(5x5=25 Marks)

- 1. State and Prove Varigon's Theorem.
- 2. (a) State and Prove principle of virtual work.
 - (b) Six equal uniform rods each of weight W are joined at their extremities so as to form a regular hexagon and rests hanging from the midpoint of one rod. The midpoint of this rod and opposite rod are joined by a string. Prove that the tension in the string is 3W.
- 3. (a) State the Newton's law of motion
 - (b) Define Simple Harmonic Motion. Write down the equation of motion and solve it completely.
- 4. (a) Show that the law of force towards the pole for the orbit $r^n = a^n \cos \theta$ is inversely proportional to r^{2n+3} .
 - (b) Obtain the differential equations of a central orbit in polar coordinates
- (a) Find the velocities of two smooth spheres after a direct impact between them.
 - (b) State and Prove perpendicular axis theorem for moment of inertia

Course Code :010E3540 - NUMERICAL METHODS

(5x5=25 Marks)

1. Using the following table, apply Gauss's forward formula to get f(3.75)

X:	2.5	3	3.5	4	4.5	5
f(x):	24.145	22.043	20.225	18.644	17.262	16.047

- 2. By dividing the range into ten equal parts evaluate $\int_0^{\pi} sinxdx$ by Trapezoidal and Simpson's rule.
- 3. Using Newton's method find the root between 0 and 1 of $x^3 = 6x 4$ correct to 5 decimal places.
- 4. Obtain the values of y at x=0.1, 0.2 using Runge-Kutta fourth order method for y' = -y given y(0) = 1.
- 5. Find by Gauss elimination method, the inverse of

$$A = \begin{pmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$$